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Preface 

Aggregation-induced emission (AIE) is a new branch of luminescent materials research 
that aims to explore luminescence at the aggregate level. AIE luminogens (AIEgens) 
often show no emission in solutions at the molecular level but become brightly 
emissive when their molecular species are aggregated. Aggregation processes generally 
involve the interplay of competitive or cooperative effects, and new structures, 
properties, and functions usually appear and diversify in the aggregates. Over the 
course of the last 20 years, AIE research has made great strides in material develop-
ment, mechanistic study, and high-tech applications. Meanwhile, research on AIE is 
an ideal entry point for scientists to explore and unravel the mysteries in the meso 
world, since AIE is a typical phenomenon showing a nonlinear property change from 
molecules to aggregates. The past two decades has witnessed booming progress in 
AIE research. Some examples of the remarkable advances in the field of AIE study 
in recent years are presented in this topical collection.  

Niu et al. summarize recent progress in the design strategy of AIE-based energy 
transfer systems for light-harvesting, fluorescent probes and theranostic systems, 
with an emphasis on design strategies to achieve desirable properties. The limitations, 
challenges, and future opportunities of AIE-excitation energy transfer systems are briefly 
outlined. The discovery of aggregation-induced electrochemiluminescence (AIECL) 
in 2017 has opened new research avenues in the quest for novel, more efficient 
emitters and offered platforms for biological and environmental sensing applications. 
The great abundance of fluorophores presenting AIE in aqueous media renders 
AIECL a potentially powerful tool for future diagnostics. De Cola et al. give their 
reflections about the future directions to take for the development of sensing devices 
based on AIECL. Ye et al. highlight recent developments in clusteroluminescence, 
including mechanistic studies, the disclosure of room-temperature phosphorescence, and 
the extension of light emission to the longer-wavelength region and also demonstrate 
a few applications in various fields. Kachwal and Laskar review AIE-active organic 
mechanofluorochromic materials, i.e., AIEgens with changes in their emissions under 
anisotropic and isotropic pressures. The relationship between the chemical structures 
of AIEgens and the change in the emission behaviours under pressures is discussed.  

vii



viii Preface

Fery-Forgues and Vanucci-Bacqué encompass the various ways to use benzazole 
units in solid-state luminescence enhancement systems. They underline the significant 
progress recently made in the understanding of the photophysical mechanisms involved. 
Benzazoles are robust building blocks, easily incorporated into a variety of structures 
which demonstrates advantages taken from these small heterocycles for the design of 
increasingly efficient AIEgens. Ma reviews the status and envisions the prospects of 
AIEgens in organic light-emitting diodes, optically pumping organic lasers, organic 
solar cells and organic photodetectors. It demonstrates that AIEgens are important 
organic optoelectronic materials.  

The enhancement of photoluminescence through formation of molecular aggregates 
in organic oligomers and conjugated organic polymers is reviewed by Rodrigues and 
de Melo. Future perspectives for the rational design of AIEgen structures are discussed. 
Fluorescent gels have numerous properties that are intrinsic to the gel structures, with 
additional light-emitting properties making them attractive for different applications. 
Y Tang et al. summarize current studies associated with the development of fluores-
cent gels using AIEgens and propose new directions for future research, especially  
the biomedical applications in drug delivery, biosensors, bioimaging, and tissue 
engineering. B Z Tang et al. review the recent advances in the design, preparation, 
performance, and applications of functional synthetic polymer systems with AIE 
attribute and stimuli responses. Various AIE-based polymer systems responding to 
single or multiple physical or chemical stimuli are illustrated with specific examples. 
The current challenges and perspectives on the future development of this research 
area are also discussed.  

Enzyme-responsive peptide-based AIE bioprobes used for biomedical applications 
are summarized by Lou et al. How each aggregation strategy detects enzyme activity 
and treats the diseases under imaging guidance are discussed and the current pro-
blems and future prospects of enzyme-responsive peptide-based AIE bioprobes are 
explored in this review. Perera and Yan highlight examples where AIEgens are 
employed as molecular probes in the imaging, discrimination and killing of bacteria, 
viruses and fungi.  

As guest editors, we are sincerely thankful for the great contributions from all the 
authors and the professional assistance from the editorial office of Topics in Current 
Chemistry. We hope this topical collection will attract broad attention among scientists 
and technologists and inspire scientific exploration at the aggregate level and high-
tech innovation utilizing AIEgens. 



Youhong Tang 
College of Science and Engineering 

Flinders University, Australia 
 

Ben Zhong Tang 
School of Science and Engineering 

The Chinese University of Hong Kong, Shenzhen, China 
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Abstract
The enhancement of photoluminescence through formation of molecular aggregates 
in organic oligomers and conjugated organic polymers is reviewed. A historical con-
textualization of aggregation-induced emission (AIE) phenomena is presented. This 
includes the loose bolt or free rotor effect and J-aggregation phenomena, and dis-
cusses their characteristic features, including structures and mechanisms. The basis 
of both effects is examined in key molecules, with a particular emphasis on the AIE 
effect occurring in conjugated organic polymers with a polythiophene (PT) skeleton 
with triphenylethylene (TPE) units. Rigidification of the excited state structure is 
one of the defining conditions required to obtain AIE, and thus, by changing from 
a flexible ground state to rigid (quinoidal-like) structures, oligo and PTs are among 
the most promising emerging molecules alongside with the more extensively used 
TPE derivatives. Molecular structures moving away from the domination of aggre-
gation-caused quenching to AIE are presented. Future perspectives for the rational 
design of AIEgen structures are discussed.

Keywords AIE · Organic conjugated polymers · Polythiophenes · J-aggregates · 
Fluorescence
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1  Background to the AIE Phenomena: An Historical Perspective

Already 20 years have passed since Tang et al. [1] reported a system that, in 2001, 
introduced the concept of aggregation-induced emission (AIE) in contrast to the 
most common opposing phenomenon of quenching of fluorescence occurring in 
the great majority of fluorophores in solid state as a result of aggregation-caused 
quenching (ACQ) [2]. Tang et al. pioneered these studies, reporting on the efficient 
blue emission of 1-methyl-1,2,3,4,5-pentaphenylsilole in thin films, which, upon 
addition of water (a poor solvent), were shown to induce aggregate formation on 
these silole derivatives in ethanolic solution [1, 3].

Before the findings Tang et al., there had been only a few reports on enhanced 
emission in the solid state [4]; these included the enhancement of phosphorescence 
emission in xanthene dyes (eosin and erythrosine) in mixture of glycerol:water fro-
zen glass [5], excimer emission of hydrocarbons in restricted molecular arrange-
ments [6, 7] and in poor solvent medium [8], and emission of J-aggregates formed 
in pyridinium-substituted indolizines [9] and in cyanine and merocyanine dyes 
(Scheme 1) [10, 11]. However, emission enhancement in aggregates, with a new flu-
orescence band associated with intermolecular interactions, had been reported in the 
first half of the twentieth century.

1.1  Enhancement of Emission from J-Aggregate Formation

In 1936, Scheibe 12] and Jelley [13, 14] independently observed an unusual behav-
iour of pseudoisocyanine chloride [also known as 1,1′-diethyl-2,2′-cyanine chlo-
ride, PIC chloride (Scheme  1)]: in aqueous solution, the absorption maximum of 
the spectrum shifted to lower energies (red-shift) when compared with the spectrum 
of the same dye in ethanol; upon increase of the dye concentration in water this 
band became more intense and sharp [15]. Dye aggregates with a narrow absorp-
tion band that is shifted to longer wavelengths (bathochromically shifted), with very 
small Stokes shift and increased fluorescence intensity relative to the monomer, are 
generally designated as Scheibe aggregates or J-aggregates (J denotes Jelley after its 
discoverer) [11, 16]. In contrast, aggregates with absorption bands shifted to shorter 
wavelengths (hypsochromically shifted) with respect to the monomer band are des-
ignated H-aggregates (H denotes hypsochromic) and exhibit, in most cases, low or 
almost total absence of fluorescence [17]. The mechanisms associated with these 
interactions are better understood with the Exciton Model of Kasha, but are out of 
the scope of this review [16, 18, 19]. The AIE effect partially contrasts with the 
formation of emissive H- (non-emissive) or J- (emissive) aggregates because AIE 
interaction of two molecules leads to a rigidification of the molecular structure—not 
mandatory in J-aggregates—thus decreasing the efficiency of the radiationless inter-
nal conversion channel and increasing the efficiency of the radiative de-excitation 
channel.

Enhancement of emission caused by J-aggregates has been described in sev-
eral systems (Scheme  1). Oelkrug et  al. [20] showed the role of J-aggregation in 
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enhancement of emission in solid state oligophenylenevinylenes, with a change in 
fluorescence quantum yield from practically zero in solution to 60% in nanoparti-
cles or in films, further justifying this phenomenon as arising from the rigid envi-
ronments provided by viscous solvents, or solid state phases, suppressing the tor-
sion-induced molecular movement associated with nonradiative deactivation [21]. 
Reports on the formation of J-aggregates in BODIPY systems (4,4-difluoro-4-bora-
3a,4a-diaza-s-indacene), and consequently the observation of AIE or aggregation-
induced emission enhancement (AIEE) phenomena, were described by Choi et al. 
[22] with meso-BODIPY derivatives and, more recently, by Sheng et al. [23] in aza-
BODIPY. In these works, the substituents were chosen for their proper molecular 
packing into a J-aggregate structure.

1.2  Monomer-Like Emission Enhancement: The “Loose Bolt” or “Free Rotor” Effect

The AIE-luminogen systems first described by Tang et  al. [1, 3, 24–26] resulted 
from intramolecular rigidification as a consequence  of intermolecular interaction 
[27], but, contrary to J-aggregates, show essentially monomer-like emission [28]. 
Indeed, the AIE effect results mainly from rigidification of the monomer unit, as a 
result of this (aggregate) interaction.

In general, rigid systems such as polyaromatic hydrocarbons (PAH) display pho-
toluminescence quantum yields higher than their polyene counterparts (identical or 
similar number of carbon atoms). Although the emission of PAH depends on sym-
metry considerations (with the relative position of the two lowest singlet lying states 
having a determinant role), the presence of heteroatom(s), and solvent (polarity and 
viscosity), they are most often fluorescent compounds. In a simplified view, this can 
be attributed to the rigid structure of PAH, which contrasts with the degree of free-
dom of polyenes or other flexible structures [29]. Several examples, some given in 
Scheme 2, illustrate this molecular rigidity in comparison with flexible analogues. In 
Scheme 2, the left hand panel corresponds to rigid structures, all with high fluores-
cence emission efficiency, whereas the right hand panel depicts “flexible” molecular 
structures (“rotors”), with poor luminescence quantum yields and, generally, high 
radiationless internal conversion  (S1~~→S0) deactivation. In the examples given, 
the twisting motion associated with the skeleton with the double bond(s) becomes 
locked, and an analogy with the “free rotor” effect, which is now precluded, seems 
adequate.

In Scheme 2, the structural comparisons can be envisaged as follows. With aza-
benzene (AB), with ϕF  ≈  0, simple blocking of the twisting motion leads to the 
9,10-diazaphenanthrene (DPA) structure, now with a ϕF = 0.02 in ethanol and a 
lifetime of 4.27 ns [30]. With the E- and Z-stilbene structures (the Z-cis structure 
photoisomerizes in a barrierless process compared with the E-trans structure) [31, 
32], which are basically known to be poorly fluorescent at room temperature (with 
values of ϕF = 0.04–0.05, but temperature dependent and at T = 83.2  K—another 
way to rigidify the molecular structure—with ϕF ~ 0.95 [33]) can, again by block-
ing the twisting motion associated with the central double bond, lead to the struc-
tures Ind-Ind (indeno[2,l-a]indene) and DPCB (1,2-diphenylcyclobutene), which are 
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highly fluorescent with almost unitary ϕF values [34, 35]. In Scheme 2, the naph-
thalene and retinol pair constitutes another classical example where molecules with 
the same number of carbon–carbon double bonds have differences of almost one 
order of magnitude in ϕF (Np, ϕF = 0.21 [36] in ethanol and retinol with ϕF = 0.0298 
in hexane [37], the two obtained at T = 293 K), again due to rigidity associated to 
Np and not present in retinol. There is an additional type of molecule, the 9-alkyl-
substituted anthracenes, where this rotor or loose bolt effect is particular notorious 
and imparts a gain in rigidity of the molecules, in particular, when a comparison 
of the emission efficiency is made at room temperature between 9-methyl-anthra-
cene (MA, ϕF = 0.29), 9-isobutyl-anthracene (IBA, ϕF = 0.39) and 9-(tert-butyl)
anthracene (TBA, ϕF = 0.011 in n-hexane) [38, 39]. The two structures (MA and 

Scheme 2  Structures of compounds with similar structures but that differ in the molecular rigidity and 
flexibility imparted by C=C bond(s). DPA  9,10-diazaphenanthrene, AB azabenzene, DPCB 1,2-diphenyl-
cyclobutene, E-SB trans- or E-stilbene, Z-SB cis- or Z-stilbene, Ind-Ind indeno[2,l-a]indene, Np naphtha-
lene, retinol (one of the structures of Vitamin A), MA 9-methyl-anthracene, IBA 9-isobutyl-anthracene, 
TBA 9-(tert-butyl)anthracene, TB-BODIPY meso-tert-butyl BODIPY

213Reprinted from the journal   
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TBA) possess the same chromophoric core (anthracene) and therefore it is not fluo-
rescence deactivation (and associated radiative rate constant) that explains the dif-
ference in behavior. Moreover, since triplet formation is found non-populated for 
9-(tert-butyl)anthracene [39], the large difference between the methyl and tert-butyl 
derivatives is found in the large increase in the internal conversion deactivation in 
this latter anthracene derivative. This is a consequence of the fact that the process 
of converting electronic energy into vibrational energy (from S1~~ → S0) is much 
more efficient with the t-butyl-anthracene derivative, where there are many more 
low-lying vibrational modes, to absorb this excess energy, than with the methyl 
derivative. This increase in size of the substituent augments the number of degrees 
of vibrational freedom of the molecule, and the energy released through internal 
conversion turns out to be more efficient at the expense of fluorescence  emission 
(the triplet state formation is inoperative). That is, the loose bolt or rotor effect is 
more effective with 9-(tert-butyl)anthracene. An identical effect is seen with other 
structures such as the meso-tert-butyl BODIPY, where a S1/S0 conical intersection 
favors the radiationless deexcitation pathway to the ground state [40]. Recent studies 
comparing flexible versus more rigid similar structures (see Fig. 1 and associated 
discussion below), point out the relevance of this structural balance in the discussion 
of the AIE effect [41]. 

2  Development of AIE-Active Luminogen Molecules

After the account of AIE in pentaphenylsilole [1, 3], another fluorogen found to dis-
play this effect was 1,1,2,2-tetraphenylethylene (TPE), again reported by Tang et al. 
[42]. Although TPE emission has been known for about 50 years [43], in contrast 
with the poorly emissive E- and Z-stilbenes (Scheme 2), it was with the discovery 
by Tang of augmented fluorescence emission of this compound in the crystal and in 
water:acetonitrile mixtures that this effect began to be deeply explored.

The π twist of the central C=C bond of TPE in the excited state [44–46], and the 
viscosity-dependent fluorescence enhancement [47, 48] were reported in the 1980s 
and, by the end of the 1990s, several groups had studied these properties using ultra-
fast spectroscopy methods [49–51]. The origin of AIE phenomena in TPE is likely 
to be associated with the loose bolt or free rotor effect [52]. This basically leads to 
an increase (or decrease) of the coupling modes of the vibronic transitions [52, 53]. 
In systems where there is the possibility of changing from a C=C double bond to a 
carbon–carbon bond with partial single bond character (upon excitation), this “loose 
bolt effect” may therefore be considered as the genesis of the AIE effect. Indeed, 
most initial compounds showing AIE were based on a TPE central core, i.e., there 
was, in the excited state, a rigidification of these TPE-like molecules, resulting from 
aggregate interaction, with a decrease in the radiationless internal conversion decay 
pathway. Actually, this intermolecular interaction involving TPE molecules would 
result not in a particular emissive aggregate, as with J-aggregates, but in a structural 
rigidification of the molecule (in the aggregate state) that would preclude the “loose 
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bolt effect” and therefore the “movement” otherwise associated with this highly effi-
cient internal conversion radiationless deactivation.

The pioneering studies of Tang et  al. led to a rapid increase in the number of 
known luminogens with AIE characteristics (AIEgens) [54, 55] and innumerable 
AIE materials have been developed [56–58]. Other systems with AIE properties 
have been rediscovered [e.g., AIE building blocks of quinoline-malonitrile (QM) 
and polyaryl-substituted pyrrole (PAP) in Scheme  3] [54, 59–62]. To design and 
rediscover new AIEgen molecules it is therefore of utmost relevance to equate the 
mechanisms leading to the occurrence of AIE and AIEE. The free rotor or loose bolt 
effect associated with the introduction of the tert-butyl group (or similar groups with 
a high number of low-lying vibrational modes) will be of relevance in the design of 
AIE active polymers described in the section on Design and photophysical studies of 
AIE-active polymers, and is particularly relevant in the section on TPE-based conju-
gated polymers where a tert-butyl derivative increases its photoluminescence yield 
in the solid state and in a solvent mixture where a bad solvent (water) is dominant.

2.1  AIE Working Mechanisms

The working mechanisms of AIE have been investigated extensively [63–65]. One 
such proposed mechanism is restriction of the intramolecular rotation (RIR) [66], 
which can be measured through temperature-, viscosity-, and intramolecular-steric-
hindrance-dependent luminescence quantum efficiency. Restriction of intramolecu-
lar vibration (RIV) [67] was also proposed to account for the strong luminescence 
in the solid state. A more generalized mechanistic model for AIE was proposed 
by combining RIR and RIV into a global principle of restriction of intramolecu-
lar motions (RIM) [68]. Photocyclization [69–71], suppression of the formation 
of twisted intramolecular charge transfer state [63, 72–74] and Z/E isomerization 
[75–77] were other hypotheses proposed to explain the occurrence of AIE. RIM was 
shown to be the main mechanistic cause for AIE effects observed in many lumi-
nogen systems based on pure aromatic molecular rotors such as hexaphenylsilole 

Fig. 1  Structures of 2,4,5-TMe-DPE and 2,4,6-TMe-DPE along with their photophysical data measured 
in tetrahydrofuran (THF) solution. ϕF Fluorescence quantum yield of solution, τF fluorescence decay 
times, kR radiative rate constant, kNR nonradiative rate constant [41]
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(HPS). With TPE, recent studies and interpretations favor both RIM [68] and Z/E 
isomerization [77] being involved in the emission quenching of TPE in solution. 
Therefore, blocking or limiting these two mechanisms, by aggregate interaction, 
will lead to AIE. Nevertheless, this topic is still under debate, particularly regarding 
which molecular mechanism (RIM or isomerization) plays the major role in the AIE 
effect [78].

Analysis of the potential energy surfaces (PES) of model propeller-shaped struc-
ture also showed that the enhancement of emission in the solid state can be asso-
ciated with the decrease of the excited state decay caused by nonradiative mecha-
nisms [79]. Moreover, computational theoretical studies indicate that the increase 
of steric hindrance improves the fluorescence quantum efficiency and that rotation 
of aromatic substituents and π–π stacking interactions are the dominant pathways 
for the nonradiative decay of AIEgens [80]. Furthermore, the combination of ultra-
fast photophysical techniques, quantum chemistry calculations and strategic design 
of new molecules led to three additional proposed AIE mechanisms: restriction of 
the excited-state “double-bond” torsion (ESDBT) [41], restriction access to conical 
intersection (RACI) [81, 82] and dark state in heteroatoms systems (RADS) [83].

2.1.1  Stilbene-Like Molecules

Aiming to shed light on the potential reasons why some stilbene-like molecules are 
emissive in solution, whereas other are not, photophysical studies of two model stil-
bene derivatives, di-o-methyl substituted 2,4,6-TMe-DPE and mono-o-methyl sub-
stituted 2,4,5-TMe-DPE, were recently conducted [41]. While the twisted structure 
of 2,4,6-TMe-DPE, which exhibits an AIE effect, was poorly fluorescent in tetrahy-
drofuran (THF), with a fluorescence quantum yield, ϕF = 0.006, 2,4,5-TMe-DPE, a 
structurally planar molecule, displayed ϕF = 0.134 in the same solvent (Fig. 1) [41]. 
Femtosecond transient absorption (fs-TA) measurements for these two molecules 
in THF showed that two processes are involved in the excited-state deactivation of 
2,4,5-TMe-DPE, highlighted by the two time constants (τ1 = 45.2 ps and τ2 = 363 ps), 
while a much faster process occurs with 2,4,6-TMe-DPE (τ = 2.1 ps). The data also 
indicated that the twisted 2,4,6-TMe-DPE displays a faster excited-state molecu-
lar motion than the structurally planar 2,4,5-TMe-DPE (kNR = 4.7 ×  1011   s–1 vs. 
3.3 ×  109  s–1), thus showing the clear dominance of the radiationless decay pathways 
with 2,4,6-TMe-DPE. The restricted molecular motion in the planar 2,4,5-TMe-DPE 
made the radiative decay comparable with the nonradiative decay, thus clarifying 
the ϕF = 0.134 obtained in solution.

2.1.2  Quantum Mechanical Calculations

Time-dependent density functional theory (TDDFT) quantum mechanical the-
ory was used to perform calculations in the excited state of 2,4,6-TMe-DPE and 
2,4,5-TMe-DPE [41]. The authors concluded that most of the excited state energy 
of 2,4,6-TMe-DPE was released nonradiatively via the excited-state “double-bond” 
torsion (ESDBT) mechanism; however, ESDBT was suppressed in 2,4,5-TMe-DPE, 
and this justified its higher radiative rate constant value, kR (see Fig. 1) [41].
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In order to further understand the relationship between intramolecular motions 
and AIE properties, Blancafort and Morokuma conducted independent quan-
tum chemical investigations [81, 84–86]. They analyze the deactivation processes 
of AIEgens DPBF [85] , tetraphenylsilole [86], and phenyleneimide [87] with the 
RACI (restricted access to a conical intersection) model. The RACI model explains 
the AIE effect by differences in the radiationless decay rate. Their results predicted 
a largely distorted structure near the minimum energy conical intersection (MECI). 
In solution, the MECI is easy to access, which contrasts with the solid state situa-
tion, where it becomes difficult to access, and it is prohibited in the crystalline state. 
Later, by studying different substituted TPE derivatives, Kokado et al. [82, 88] indi-
cated that the C=C twist in the excited state is critical in the occurrence of the AIE 
phenomenon.

Many of these mechanistical studies were performed to specify the exact motions 
and decay pathways, making the meaning of RIM more accurate and detailed. How-
ever, the behavior of heteroatom-containing AIEgens may not be fully explained by 
RIM. Indeed, for example, a molecule can change its photophysical behavior from 
AIE to ACQ characteristics, simply by changing a single heteroatom [89, 90]. Two 
excited states must be taken into account, and a mechanism, restriction of access to 
dark state (RADS), is specified to fully equate (in addition to RIM) the complete 
the picture of AIE mechanism. To probe this concept, a nitrogen-containing AIEgen 
named 9-anthyl-methyl)bis (2-pyridylmethyl)amine (APA in Fig. 2) was chosen as a 
model compound [83].

From solution to aggregate suspension and then to crystal, the degree of molecu-
lar freedom gradually decreases, concomitantly with the increase in ϕF (from 0.006 
in solution to 0.39 in the crystal) [83]. Also, the radiationless rate constant, kNR, 
decreases dramatically (103 times higher in solution than in the crystal) while the 
radiative rate constant, kR, increases more slightly (by a factor of 15) [83]. These 
results are in agreement with commonly reported RIM results [68]. Surprisingly, 
the zinc-APA complex shows not only a drastic decrease in kNR (ca. four orders of 
magnitude, 5247 higher in solution of the monomer than the complex), but also an 
enhancement of kR with ϕF = 0.998 [83]. This has led to the conclusion that RIM 
and the availability of lone pairs (to establish n,π* transitions) may both influ-
ence the emission process [83]. Two possible competing decay pathways may be 
involved: (1) relaxation to the S1 to reach the emissive (π,π*); and (2) relaxation to a 

Fig. 2  Structures of 9-anthyl-methyl)bis (2-pyridylmethyl)amine (APA) and photophysical data obtained 
in THF, 90%water:10% THF (90  W:10THF) mixture, in crystal, and with the Zn-APA complex. Flu-
orescence quantum yield (ϕF), fluorescence decay times (τF) and radiative (kR) and nonradiative  (kNR) 
rate constants (kNR) are given [83]
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dark state (n, π*), leading to fast non-radiative decay. Since the (n, π*) state is lower 
in energy than (π, π*), it results in weak fluorescence and short lifetime value [83]. 
This shows that, even in molecules where the AIE effect is potentially present, the 
balance between the increase or decrease of photoluminescence may also depend on 
the nature of the two lowest lying singlet excited states, and not only due to a restric-
tion of the molecular motion process.

3  Photophysical Studies of AIE-Luminogens

3.1  TPE Derivatives

A good–bad solvent mixture constitutes a consensual strategy to study AIE behavior 
in dilute solutions of potential AIEgens [91]. Since TPE derivatives are typically 
aromatic-like (hydrophobic) molecules, water is a poor solvent, and is therefore used 
as the most common bad solvent in combination with water-miscible good solvents 
such as THF, acetonitrile, dimethylsulfoxide and 1,4-dioxane. Formation of nanoag-
gregates in suspension, in solvent–nonsolvent mixtures, may also lead to the Mie 
scattering effect [92], detected by the appearance of a long wavelength tail in the 
absorption spectrum [93].

TPE is, as described, one of the most flowing sources of AIEgens. This is in part 
due to its structural modification (rigidification) in the excited state, but also to the 
development of simplified strategies of synthesis and derivatization of this molecule 
[43]. Scheme  4 depicts some illustrative TPE derivatives synthesized by several 
research groups [94–98].

Increases in the photoluminescence efficiency in the solid state, or from a bad-
solvent to a good-solvent fraction, may be significantly different depending on the 
system; this happens even among several TPE derivatives (Table 1). The AIE factor 
(αAIE), defined as the ratio between the ϕF values of the aggregate and of the mono-
mer (isolated molecule in a good solvent), constitutes a parameter that establishes a 
qualitative manner of measuring the emission increase due to the AIE. Table 1 sum-
marizes some of the relevant literature data on TPE derivatives with data obtained 
from photophysical studies [94–98]. As noticed in Table  1, the value of αAIE is 
structure dependent, and so is the dominant intramolecular motion, restricted when 
aggregation occurs, acting as an active dissipation factor for the radiationless deac-
tivation [99]. In Table 1 and Scheme 4, it is worth noting the highest αAIE values for 
compounds 15 and 16, which are ca. 9.5 times higher than those of TPE.

AIEgens oligomers generally possess twisted conformational structures in the 
ground state, and hence afford a more moderate packing pattern than traditional 
luminogens with a planar structure. This facilitates the interplay between differ-
ent morphologies by heating, solvent fuming, mechanical stimuli such as press-
ing, grinding and so forth, in particular upon structural change promoted by light 
excitation [100]. Emission of many AIEgens can be switched through modulating 
morphology of the luminogen between amorphous and crystalline states [101]. 
Consequently, several AIEgens present mechanoluminescence (ML) properties 
[26, 101–106], which have been the subject of extensive reviews in the past 5 years 
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[100, 107–110]. Among those AIE-active and ML responsive compounds, TPE 
[108, 111], distyrylanthracene (DSA) [110], diphenylbenzonfulvene (DPBF) [26, 
101, 106] and phenothiazine (PTZ) [112–116] derivatives are likely to be within the 
more extensively investigated (Scheme 3).

Scheme 4  Comparison of TPE and some TPE derivative structures described in the literature. The core 
structure of TPE is highlighted in black and red (for compound 13)
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3.2  Phenothiazine Derivatives

PTZ is a well-known heterocyclic compound [117], with a twisted butterfly-like 
structure, with electron-rich nitrogen and sulfur heteroatoms, and therefore with a 
strong electron donor character. This favors the presence of a lowest lying n,π* sin-
glet excited state and favors intersystem crossing between the excited singlet and 
triplet states (with different state configurations) according to El-Sayed rules [118], 
opening a potential new emissive channel and class of molecules: PTZ-based lumi-
nogens with thermally activated delayed fluorescence (TADF) [119, 120]. Due to its 
non-planar bending “butterfly” shaped conformation [121], PTZ’s ring may avoid 
intermolecular interactions, such as π–π stacking, which are typically responsible 
for ACQ. This has led to the use of the PTZ group as a basic chromophoric structure 
platform for the design of new AIE luminogens [122, 123].

Tang et  al. [124] prepared a series of phenothiazine-based red/near infrared 
(NIR) fluorophores, found AIE-active, using 10-butyl-phenothiazine-3-carboxal-
dehyde as starting material. Among them, PTZ1 and PTZ6 presented higher ϕF, 
of 0.234 and 0.207, respectively, with λem > 610 nm in the solid state (Fig. 3). In 
these PTZ compounds, the mechanism of the AIE behavior was further explored 

Table 1  Comparison of 
fluorescence quantum yields 
for tetraphenylethylene (TPE) 
derivatives in solution, mixture 
of good solvent/bad solvent and 
in solid state, both powder and 
film, where data are available, 
along with the aggregation-
induced emission (AIE) factor 
(αAIE), which discriminates the 
enhancement of the fluorescence 
upon aggregation

Compound numbers are related to structures in Scheme  4. Data 
obtained from [94–98]
a 𝛼AIE = Φ

agg

F
∕Φsol

F
 , where ϕagg

F
 = highest fluorescence quantum yield 

of the aggregate form and ϕsol
F

 = fluorescence quantum yield diluted 
in solution
b Data not available

Compound Solution Good solvent/
bad solvent

Powder Film αAIE
a

TPE 0.003 0.25 0.23 0.26 87
1 0.006 0.075 0.30 n.a.b 50
2 0.60 0.75 0.98 n.a 1.6
3 0.024 0.20 0.14 0.46 19
4 0.003 n.a n.a 0.45 56
5 0.003 0.043 0.14 0.12 47
6 0.016 n.a n.a 0.37 23
7 0.017 n.a n.a 0.22 13
8 0.002 0.007 n.a n.a 3.3
9 0.017 0.13 n.a n.a 7.3
10 0.004 0.04 n.a n.a 10
11 0.097 0.18 n.a n.a 1.9
12 0.004 0.13 n.a n.a 33
13 0.004 0.46 n.a n.a 115
14 0.003 0.13 n.a n.a 43
15 0.001 0.39 1.0 n.a 833
16 0.001 0.40 1.0 n.a 833
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[124]. Single-crystal analysis of PTZ1 suggested that the butterfly-shaped geom-
etry was partially responsible for the higher emission efficiency in solid or 
aggregated states than in solution, with the n-butyl group acting as a spacer to 

Fig. 4  Photophysical studies of N-alkyl and N-aryl substituted phenothiazines (PTZs). Structures, acro-
nyms and solid state emission (top images thin films, bottom images powder) under UV-illumination. 
Fluorescence emission spectra for the N-substituted PTZs in THF:water mixtures and their respective 
correlation of photoluminescence intensity and fluorescence emission maxima (λem) with the mixture 
water fraction (fW = 0–90%). Adapted from reference [125], with permission from Elsevier, Copyright 
2020
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separate neighboring molecules. The high ϕF and red/NIR emission made those 
dyes favorable for biological imaging, with PTZ6 being used to stain HeLa cells. 
Indeed, PTZ6 was found to accumulate mainly in lipid droplets (LDs), with bet-
ter a performance when compared to traditional LD tracking agents such as Nile 
red. This selectively of PTZ6 was suggest to result from the hydrophobic n-butyl 
group.

The design of new PTZ derivatives with AIE properties require a deeper under-
standing of the photophysical properties and photostability of this class of com-
pounds. A comprehensive study of the photophysical properties of five N-alkyl 
and N-aryl substituted PTZs was reported recently (Fig. 4) [125].

The electronic spectral properties (of both singlet and triplet states) and flu-
orescence quantum yields (ϕF) in solution were found to be poorly affected by 
substitution. The N-methyl and N-phenyl substituted phenothiazines, mePTZ and 
phPTZ, respectively, showed higher ϕF values in the solid state, either in thin 
films or powder, than in solution. It was found that the solid state (powders) of 
mePTZ and bphPTZ derivatives exhibit room temperature phosphorescence 
(RTP, Fig.  4). Moreover, and more interestingly, the photostability and AIE 
properties were found to be dependent on the N-substituent (alkyl versus aryl). 
In polar solvents, PTZ and mePTZ were found to undergo self-sensitized pho-
tooxidation upon UV-irradiation while the N-aryl substituted phenothiazine, 
bphPTZ, was found to be photostable. Nonetheless, for the N-alkyl derivative, 
hexPTZ, an increase in total emission, together with a red-shift of emission max-
ima, was found for the mixture with the highest water fraction content, fW > 80%, 
thus showing AIE. A different behavior was observed for the N-aryl derivatives, 
phPTZ and bphPTZ, where, after a first increase in total emission up to the frac-
tion mixture fW = 50%, ACQ is observed thereafter, which, also based on TDDFT 
calculations, was attributed to the adoption of a different conformation for phPTZ 
and bphPTZ, which was also found to be water (in THF: water mixtures) content 
dependent.

3.3  Distyrylanthracene Derivatives

Distyrylanthracene (DSA), divinylanthacenes (DVA), distyrylbenzene (DSB) and 
derivatives, have also been reported as stimuli responsive smart materials [126] 
with high solid-state emission [127]. Tian et al. [128] provided some photophysi-
cal insights on the origin of the AIE phenomenon in a series of DSA derivatives 
(Fig. 5), using steady-state and time-resolved fluorescence.

In dilute solutions, DSA derivatives display a twisted structure in the ground 
state that, upon excitation, ultimately relaxes, within several picoseconds, to a planar 
structure [128]. With the DSA derivatives, a more extended conjugation is observed 
in the excited state (electron cloud more delocalized) leading to a more stabilized 
and rigid structure. Comparing the derivatives, those with electron-donating groups 
(BMOSA and BTVA) have higher radiationless rate constant values, kNR, whereas 
the DSA-derivative with electron-withdrawing group (BP2VA) display the small-
est kNR. In good solvent solutions, the radiationless decay channel dominates the 
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deactivation of the excited state (kNR is at least three times higher than kR) of DSA 
and derivatives. In contrast, the nonradiative deactivation is greatly suppressed by 
molecular stacking in the aggregates, here studied either in single crystal structures 
or supported in polymethylmethacrylate (PMMA) films, and consequently the flu-
orescence is significantly enhanced (e.g., for BMOSA, ϕF in crystal is over eight 
times higher than in THF solution).

4  AIE and CIE in Small Molecules

Diphenylbenzonfulvene (DPBF) derivatives are known to display another AIE-
related property: crystallization-induced emission (CIE). DPBF derivatives are 
almost non-emissive in solution and amorphous state, but highly emissive in 
the crystalline state [111]. BpPDBF (Fig.  6) crystals emit an intense blue light 
upon UV-excitation, while its amorphous powders emit a faint yellow light; in 
the good solvent acetonitrile, BpPDBF is poorly emissive [26]. Notably, the ϕF of 
BpPDBF crystal is 32 times higher than that of its amorphous powder. The CIE 
effect is noticed even more dramatically for DAkBDF (Fig. 6); indeed, while its 
amorphous powder is practically non-emissive (< 0.001), in its crystal structures 
it shows high ϕF values (0.56–0.82) [106].

Dong et al. [101] replaced alkoxy phenyl groups with tolyl groups with ditol-
yldibenzofulvene (DTDBF, Fig. 6) leading to a twisted conformation, bulky con-
jugation core and peripheral tolyl groups. As described with DPBF [24] and other 
derivatives [25, 129], DTDBF preserved the AIE-active core: while it is nearly 
non-emissive in pure acetonitrile, its emission intensity was gradually augmented 
upon gradual addition of water in acetonitrile:water mixtures. For DTDBF, more 
interesting was to observe three single crystals of this compound with varied 
emission colors (Fig.  6). The molecular conformations, packing patterns and 
interactions in the three crystal structures of DTDBF were investigated. Specific 
strong intermolecular interactions (such as π–π stacking or H-/J-aggregates) were 

Table 2  Comparison of the optical and photophysical properties of ditolyldibenzofulvene (DTDBF) sol-
ids in crystalline and amorphous states [101]. See sample structures in Fig. 6

a Emission maximum
b Fluorescence quantum yield determined with an integrating sphere with λex = 340 nm
c Fraction (A, %) and lifetime (τ, ns) of shorter (1) or longer lived species (2)
d kF =

ϕF

τF
;

e kNR =
(1−ϕF)

τF
;

f Determined with an average lifetime, <τ > = 1.1 ns

Sample λem (nm)a ϕF
b A1/A2c τ1 (ns) τ2 (ns) kF×  10–7  (s–1)d kNR×  10–8  (s–1)e 

CO 586 0.162 100/0 1.7 9.53 4.99
CY 545 0.233 100/0 2.9 8.03 2.64
CB 461 0.281 100/0 39.2 0.72 0.18
Am 557 0.029 80/20 0.9 1.9 2.64f 8.83f
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ruled out due to the twisted molecular conformations in all the crystal structures 
of DTDBF. Thus, the emissions of those crystals should occur from a single 
molecule which depends mainly on its molecular conformation. The asymmetric 
units of CB, CY and CO contain one, three, and six molecules of DTDBF respec-
tively. The more C–H⋯π interactions presented in the crystal structure, the higher 
the photoluminescence efficiency (Table  2). The existence of these weak inter-
actions between molecules helps lock the motion of the aryl rings, and, hence, 
to rigidify the molecular conformation [100], with consequent increase in pho-
toluminescence efficiency due to CIE. While the three crystal structures display 
single exponential fluorescence decays, the amorphous solid of DTDBF displays 
a bi-exponential decay, with 80% contribution of the short-lived component and 
20% of the long-lived component, suggesting the availability of fast decay pro-
cesses due to the loose packing pattern (Table 2). The lifetime increases promptly 
with the number of C–H⋯π interactions when comparing the three crystal struc-
tures, which also agrees with the increase in photoluminescence efficiency. None-
theless, the fluorescence quantum yield in crystalline form is at least five times 
higher than in amorphous powder.

Another luminogen core molecule that matches both ML properties with high 
emission efficiency in the solid state (CIE) is triphenylacrylonitrile (TPAN), see 
structure in Fig.  7 [111]. Combination of TPAN with diaryl [130] and tryphe-
nylamine [131, 132] groups introduces donor–acceptor (D–A) characteristics into 
these systems, making  these AIE-active luminogens into molecules with intramo-
lecular charge transfer (ICT) character and ϕF values close to 1.0 in solid powder. 
The TPAN moiety was also attached to the backbone of electron-rich N-heterocycles 
to design D–A polymers that feature AIE properties (see next section) [133–136].

5  Design and Photophysical Studies of AIE-Active Polymers

Until 2 years ago the literature regarding the AIE effect in polymers was relatively 
limited, particularly when compared with oligomers showing this effect. This has 
generated increased interest, which led to a growth in publications of AIE effect in 
polymers from ~ 100 papers in 2016 to 190 in 2019. Although less attention has been 
devoted to polymers with AIE, several reviews have been published concerning syn-
thetic strategies and smart material applications [56, 57, 137, 138] of AIE polymers, 
their mechanochromic fluorescent properties [139] and some specific applications 
of these polymers in biological systems [140] and as detector sensors for explosives 
[141].

5.1  Building AIE-Active Polymers from Small Molecules with AIE Properties

AIE-active polymers built from a combination of polycarbazoles and polytriph-
enylamines backbones (donor) and TPAN (acceptor) moieties were studied for the 
detection of 1,3,5-trinitrobenzene (TNB), used as prototypical nitroaromatic explo-
sive, in THF:water mixtures [133]. Detection of TNB by fluorescence spectroscopy 
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at low polymer concentrations by the quenching of the emission of the polymers 
upon addition of TNB was investigated. The quenching mechanism was found to be 
based on electron transfer between the excited state of the polymers and the nitroar-
omatic analyte [133, 141].

The TPAN structure was also used for the construction of another AIE-active pol-
ymer, PTzTPAN (Fig. 7) [142]. With this polymer, the electron-rich backbone used 
was from another AIE building block: phenothiazine (PTz acronym in the polymer). 
This PTz-based polymer PTzTPAN, together with PTzTPE, a polymer based on the 
PTz backbone and the TPE moiety (Fig. 7), were further investigated as AIE lumi-
nogens [142].

PTzTPAN displays a significant red-shift (~ 100 nm) in the photoluminescence 
spectra on going from THF solution to the solid state, and the polymer was found 
to be non-emissive in polar solvents, such as DMF, and poorly emissive in non-
polar solvents (ϕF = 0.006 in dioxane and 0.002 in THF) and in the solid (powder) 
with ϕF = 0.002 [142]. In classical good:bad solvent mixtures, THF:water, a clear 
enhancement of fluorescence emission was observed for mixtures with water frac-
tion (fw) ≥ 40%, also followed by a red-shift of the emission [142]. The red-shift was 
attributed to the behavior of charge transfer (CT)-type bands with an increase in sol-
vent polarity, in this case through an increase of the water fraction. In the good:bad 
solvent mixtures, ϕF was found to increase five times: 0.002 in THF to 0.010 in 
fw = 90% [142]. With PTzTPE, the increase in the water amount in THF: water mix-
tures led to a gradual increase of ϕF up to fw = 40%. Nonetheless, for PTzTPE, a 
decrease in CT band intensity upon the addition of water was observed [142]. Very 
interestingly, this showed that, for PTzTPE, concomitant with the gradual increase 
in the AIE effect, a decrease in CT contribution is observed, thus showing that the 
latter is in competition with the AIE process. Even more fascinating than the compe-
tition between the CT and AIE effects was the fact that, in dioxane:water mixtures, 
PTzTPE showed ACQ with the gradual increase of water (from ϕF = 0.14 in pure 
dioxane to 0.042 in fw = 90%). Indeed, selective AIE behaviour in specific solvents 
was previously reported for D–A systems; the main cause for this was attributed to 
the transition from the emissive locally excited (LE) state to the dark CT state [72, 
143]. Furthermore, time-resolved fluorescence measurements were performed to 
characterize the coexistence of these states in PTzTPE solution and powder (Fig. 8). 
In general, the shortest and the longest decay times are associated with the emission 
of the LE and CT species (τ1 and τ3) with decay times varying from 51 to 103 ps 
(LE) and 4.7 to 5.6 ns (CT), which can be seen by the pre-exponential factors, ai1, 
when the decays are collected at 500 nm (in the LE state emission band) and ai3 
for λem > 600 nm (CT band). One of the most interesting features of these decays is 
the presence of the intermediate decay component (τ2) in the solid state (powder), 
dioxane, and in the solvent mixtures with water; in THF, this intermediate lifetime, 
τ2, is found to be absent (Fig. 8). In dioxane:water and THF:water mixtures, the pre-
exponential values associated with this middle decay time (τ2) component increase 
concomitantly with the increase in the water fraction. The τ2 decay component could 
therefore be assigned to the emission of the polymer emissive aggregate, which was 
found to be present even in dioxane. Furthermore, fs-transient absorption (fs-TA) 
data obtained in THF shed light on the observed behavior, showing that aggregation 
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of the PTzTPE polymer indeed does not occur in THF. The fs-TA studies also 
showed that the CT state was formed both from direct excitation in the ground-state 
or at the expense of the decay of the LE excited state.

As shown in the previous examples, the general strategy for the preparation of 
AIE polymers involves incorporation of AIEgens, such as HPS, TPE [136], TPAN 
and DSA [140], into the backbone structure or grafted onto the polymer skeleton 
with different synthetic and polymerization strategies [56, 57].

5.2  TPE-Based Conjugated Polymers

TPE-based conjugated polymers—poly(arylene-diphenyl-vinylenes)—have been 
known since the 1960s [144]. Some of them show distinct AIE properties leading 
to high solid-state photoluminescence quantum yields—higher than 70% for some 
poly-TPEs [145]. The easily functionalized four phenyl rings of the TPE unit were 
combined with a variety of reactive groups in the synthesis of TPE-based polymers 
with inherent porosity [146]. The development of microporous organic polymers 
(MOPs) with very high surface area is an active field of current research [147], with 
high potential in a variety of applications [145, 148, 149], such as energy storage, 
light harvesting, catalysis and sensing of hazardous chemicals and explosives. A 
recent study on the photophysical properties of two types of poly(1,4-phenylene-
diarylvinylene)s with 4-tert-butylphenyl (Poly-t-Bu in Fig. 9) or naphthyl (Poly-Np1 
and Poly-Np2 in Fig. 9) as aryl substituents at the vinylene units as well as the cor-
responding poly(1,3-phenylene-dinaphthylvinylene), either in solution or in the solid 
state (powder and films), was made to evaluate the effect of aggregation on the pho-
toluminescence efficiency, but also the polymer porosity [98].

When AIEgens, such as TPE and derivatives, are chemically incorporated into 
polymeric structures, they may import their AIE properties [138, 150, 151]. With 
this in mind, it was anticipated that the polymers Poly-t-Bu, Poly-Np1 and Poly-
Np2, whose monomeric model compounds are AIE active, would also maintain 
their AIE properties. Although Poly-t-Bu showed an increase of fluorescence quan-
tum yield upon the increase of the water fraction, the fluorescence of the naphthyl 
polymers is quenched with the addition of bad-solvent water in THF:water mixtures. 
Actually, as shown in Fig. 9, Poly-Np1 and Poly-Np2 presented ACQ. Moreover, the 
ϕF of Poly-Np2 is smaller than Poly-Np1 either in solution (when compared at the 
same fW in THF:water mixtures) or in solid state [98]. The ACQ behaviour of naph-
thyl polymers may be caused by the π-stacking tendency of the naphthyl groups, 
leading to the formation of H-type aggregates. However, Poly-t-Bu presented a high 
photoluminescence quantum yield in solid state with ϕF = 0.64 in film—an increase 
of ca. 14 times when compared to THF. Moreover, in fW = 90%, an almost equal 
value is obtained, ϕF = 0.62 [98]. This high ϕF was found accompanied by distinct 
microporosity in the solid state with a high Brunauer–Emmett–Teller (BET) sur-
face area,  SBET, value of 417  m2   g–1, probably driven by the steric demand of the 
tert-butyl groups. Conversely, the occurrence of π–π interactions may also lead to 
tight packing of Poly-Np1 and Poly-Np2, since these polymers do not show intrinsic 
microporosity (SBET < 17  m2  g–1) [98].
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Time-resolved fluorescence decays were also obtained in order to gain further 
insight into the precise nature of the AIE phenomenon in Poly-t-Bu. The fluores-
cence decays of Poly-t-Bu in THF and THF:water mixtures were found to be well 
fitted with a bi-exponential decay law, thus indicating the presence of two emitting 
species in the aggregate region (λem = 525 nm) [98]. This possibly indicates that the 
emissive aggregate results from two main conformers with different contributions 
to the photoluminescence decay. For Poly-t-Bu in THF, a fast decay component, τ1, 
in the 0.23–1.2 ns range together with a longer decay time component, τ2, varying 
from 1.5 to 3.3 ns, were found on going from 0 to 90% water content in THF:water 
mixtures [98].

As seen in Fig. 10, the fluorescence quantum yields and the fluorescence life-
times of Poly-t-Bu follow a similar trend, i.e., a concomitant increase of these 
parameters with the increase in water content. In addition, the determination of 
the radiative (kF) and radiationless (kNR) rate constants (avoiding average life-
time contributions and instead considering the longer decay time, τ2, usually 
associated to a higher fractional contribution, Ci, to the decays) clearly showed 
a decrease of kNR and an increase of kF with fw. The radiationless decay is there-
fore dominant up to fw = 70%, and, from there onwards, the radiative deactivation 
begins to dominate, mirroring a high contribution of this deactivation channel 
due to the AIE effect [98].

Conjugated polymers (CPs) have great potential in various applications ranging 
from electronics, aerospace, sensing, catalysis and energy; hence there is intensive 
investigation of these materials [152]. Their electronic properties are, however, 
highly dependent on the physical conformation of the polymeric chains and the way 
these chains pack together in films [153]. An obstacle to their development is the 
significant fluorescence quenching in the solid state that generally occurs due to 
strong interchain interaction, as in the example of the polythiophenes [154]. On the 
other hand, oligo- and poly-thiophenes embrace one of the characteristics associ-
ated with the AIE effect: structural rigidification in the excited state. Whereas in 
molecules where this AIE effect occurs, the generic mechanism involves rigidifi-
cation associated to close proximity of another molecule (aggregation-induced), 
in oligo- and poly-thiophenes this essentially results from the quinoidal-like struc-
ture (extended π-conjugation), in contrast with the possibility of a more twisted 
conformer(s) (and this depends on the substitution) in the ground state [155–158]. 
This obviously paves the way for the study of oligo-and poly-thiophenes as potential 
AIEgens.

To try to overcome the ACQ effect, two TPE-polythiophenes, homoPT and coPT 
(structures in Fig.  11), with different degrees of TPE substitution were recently 
investigated [153]. The introduction of the propeller-shaped TPE units prevent the 
molecules from packing in a π–π stacking process in the polymeric aggregate, there-
fore precluding emission quenching of these polythiophenes in the solid state. To 
understand the role of the sterically bulky TPE pendant groups on the inhibition of 
intra- and/or interchain packing (aggregation) of these conjugated polymers, pho-
tohysical studies were performed with poly(3-hexylthiophene), P3HT, with simi-
lar average molecular weight, used as a “pure” model polythiophene, and a TPE-
thiophene (T-TPE) model oligomeric compound. Unlike what was predicted (TPE 
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preventing π–π stacking and consequent quenching of emission), homoPT and coPT, 
as well as P3HT, showed lower ϕF values in thin films than in solution of good sol-
vents. Among the three polymers, photoluminescence quenching was found higher 
for P3HT, with a ϕF decreasing from 0.19 in toluene to 0.009 in thin films [153]. It 
is interesting to realize that emission quenching, followed by the red-shifted emis-
sion spectra in the solid state, was previously attributed to emission from interchain 
(aggregate) excited states in P3HT films, where symmetry considerations reduce 
the intensity of the high energy emission [159]. Amongst the poly(TPE-thiophene) 
polymers, the quenching was found more pronounced for coPT (ϕF = 0.22 in tolu-
ene versus ϕF = 0.03 in the solid film—a ratio of ~ 7) than for homoPT (0.13 versus 
0.08, a ratio of ~ 1.6). These results suggest that for the PT with a TPE substituent 
in each thiophene unit, homoPT, the higher steric hindrance reduces planarization 
of the main backbone polymer chain in the film (although imparting rigidification 
of the skeketon) and thus the ACQ process is less efficient than for the other poly-
thiophene counterparts. To further study these polymers, lead ACQ compounds in 
solvent-nonsolvent mixtures were investigated in THF:water mixtures and correlated 
with the monomer T-TPE (Fig. 11).

For T-TPE, a clear enhancement of the emission band was observed for mixtures 
with a fW ≥ 90%, thus showing the presence of the AIE effect. For the polymers, 
a red-shift of the emission was found on going from THF to fW = 90% (where the 
highest degree of aggregation is expected), see Fig.  11. For the coPT and P3HT 
polymers, ACQ is clearly dominant, starting immediately from very low water frac-
tions, whereas for homoPT, in THF:water mixtures, suppression of fluorescence 
emission was less pronounced than for coPT; indeed, only a minor gradual decrease 
of fluorescence was observed up to the mixture with the highest water content. Thus, 
contrary to what is observed for the coPT polymer, the characteristic thiophene-TPE 
monomeric unit of the homoPT polymer restricts (although not completely) forma-
tion of non-emissive aggregates. This shows that a higher degree of TPE substitu-
ents (as in homoPT) restricts formation of non-emissive aggregates, basically bal-
ancing the AIE and ACQ effects (Fig. 11).

Another interesting feature coming from the study of these polymers is the obser-
vation from time-resolved fluorescence studies, as a function of temperature, that 
for homoPT and coPT, the deactivation of the excited state occurs mainly through 
energy migration along the polymer backbone. Moreover, for P3HT, the excited 
state decay involves competition between conformational relaxation (associated with 
decay times in the 12.8–15.4 ps range) and energy migration (∼ 80 ps) [153]. Again, 
absence of conformational relaxation for TPE-substituted polythiophenes can be 
attributed to the restriction of torsional movements promoted by the bulky TPE sub-
stituents in these polythiophenes. The study showed that, even though the strategy of 
incorporation AIE-luminogen into the polymer backbone could not circumvent the 
ACQ effect in all polythiophenes, restriction in the formation of nonemissive aggre-
gates was observed. Indeed, T-TPE showed AIE, and with homoPT the ACQ and 
AIE effects apparently cancel each other out [153].
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6  Concluding Remarks

In the past 20 years, and associated with the discovery of the AIE effect, a plethora 
of AIEgen molecules has been developed. The challenges are now in the develop-
ment of applications to take real advantage of this effect. Despite the enormous 
number of structures, the rational design of new structures remains a challenge. The 
future design of innovative AIE systems, small molecules (oligomers) and polymers, 
will take advantage of known photophysical mechanisms to prevent ACQ phenom-
ena in solid, aggregate or confined media. Despite the enormous number of studies 
in the past two decades on this effect, of making emissive molecules that, other-
wise isolated, are non-emissive, this seems just the beginning of a chapter of excit-
ing new research. The rediscovery of molecules that may suffer structural changes in 
the excited state (e.g., molecular rigidity or the decrease of the number of low lying 
vibrational levels by minimizing the contribution via the loose bolt effect) opens a 
new route for an enormous variety of AIEgens. Additional strategies to increase the 
photoluminescence emission in the solid, or aggregate state, will surely include the 
design of J-aggregate forming compounds, molecules with room temperature phos-
phorescence and thermally activated delayed fluorescence.
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